Publications
Bioscience, Biotechnology, and Biochemistry 2012; 76(6): 1150-4
Concentrated bovine milk whey active proteins facilitate osteogenesis through activation of the JNK-ATF4 pathway
Kentaro Tsuji-Naito, Ralph W Jack
Abstract
Concentrated fractions of low molecular weight whey proteins (1-30 kDa), that is concentrated bovine milk whey active proteins (CBP), have been found to enhance bone formation in both in vivo and clinical studies, but the underlying mechanisms are poorly understood. In this study, we found that CBP promoted osteoblastic differentiation in normal human osteoblasts, and determined the involvement of the c-jun NH2-terminal kinase (JNK)-activating transcription factor 4 (ATF4) pathway. We observed that alkaline phosphatase activity and mineralization were significantly induced by CBP treatment. In addition, mRNA expression of ATF4 was intensely elevated in CBP-treated osteoblasts, indicating that the late-phase events of differentiation were promoted. We found that CBP activated the phosphorylation of JNK and extracellular signal-regulated kinase (ERK). Furthermore, pathway analyses using the various signaling pathway-specific inhibitors revealed that JNK activation, but not ERK activation, is essential for CBP-induced mineralization and ATF4 expression. Our results indicate that the JNK-mediated ATF4 pathway is required for CBP-promotive osteogenesis.